

CORROSION BEHAVIOR OF COPPER-ALUMINA NANOCOMPOSITES IN

DIFFERENT CORROSIVE MEDIA

D. SABER¹, KH. ABD EL-AZIZ² & A. FATHY³

¹Department of Materials Engineering, Faculty of Engineering, Zagazig University, Egypt ^{1, 2}Department of Mechanical Engineering, Collegeof Engineering, Taif University, Saudi Arabia ³Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Egypt

ABSTRACT

The present studyaimsto investigate the corrosion behavior of the Cu–Al₂O₃ nanocomposite, with various alumina contents, in both 3.5wt.%NaCl and 0.5 M H₂SO₄ solutions using electrochemical technique. The Cu–Al₂O₃ nanocomposites with different weight fractions of Al₂O₃were produced bypowder metallurgy method. The Cu–Al₂O₃ nanocomposite powders were prepared bymechanochemical technique. The structure and characteristics of the powders and composites produced from this route were examined by XRD, SEM, EDS and metallography. The results showed that, the alumina of nano-sized particles was formed and dispersed within the copper matrix. It was found that the Cu–15%Al₂O₃nanocompositehad the lowest corrosion resistance.All specimens exhibited lower corrosion current density in 3.5wt% NaCl solution than that in 0.5M H₂SO₄ solution.

KEYWORDS: Mmcs, Nanocomposites, Corrosion, Microstructural Analysis